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A Bound for the Pressure Integral
in a Plasma Equilibrium
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An interpolation inequality for the total variation of the gradient of a composite
function is derived by applying the coarea formula. A bound for the pressure
integral is studied by establishing an @ priori estimate for a solution of the
Grad-Shafranov equation of plasma equilibrium. A weak formulation of the
Grad-Shafranov equation is given to include singular current profiles.
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1. INTRODUCTION

A simple but essential question in the fusion plasma research is how large
a plasma energy can be confined by a given magnitude of plasma
current.?'?* In a magnetohydrodynamic equilibrium of a plasma, the
thermal pressure force Vp is balanced by the magnetic stress j x B, where B
is the magnetic flux density, j=V xB/u, is the current density in the
plasma, and p,=4n x 10~7 is the vacuum permeability. The plasma equi-
librium equation Vp=jx B thus relates the pressure and the current. We
want to estimate the maximum of the total pressure with respect to a fixed
total current. Mathematically this problem reduces to an a priori estimate
for the pressure integral with respect to a solution of the equilibrium
equation with a given magnitude of current.

Here we assume a simple two-dimensional plasma equilibrium. Let
Q<R? be a bounded domain. We consider an infinitely long plasma
column; £ corresponds to the cross section of a column containing the
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plasma. If there is no longitudinal magnetic field, the equilibrium equations
are

—A¥=P()) nQ, (1.1)
Y=c on 082 (1.2)
[ (=) dr=pol, (13)

where / is the flux function, P =y, p, P(?) is a nonnegative function from
R to R, P'=dP(¢t)/d:, I is a given positive constant, and ¢ is an unknown
constant; see Section 3.1 for the derivation, and also see refs. 9, 10, 17, and
21. We assume P'=0. Since —Ay/u, parallels the current density, [
represents the total plasma current. The total pressure in a unit length of
the plasma column is given by integrating p over Q. In this paper we study
a bound for the (poloidal) beta ratio,>** which is defined by

ﬁ:jﬂ p d/(IPuy/87) = 87 jg P(y) dx/(fg (—AY) dx)z (1.4)

A crucial step is to establish an interpolation inequality to estimate the
total variation of the gradient of P(i) in Q. Our estimate reads

1/2 172
[P <2 (Pone | —avax) (] PODa) 19
«Q Q Q .
provided that —AY >0 in Q and Y =c on 32, and that P'>0 with
P(c)=0, where ¢ is a constant and P_,, is the maximum of P(i) over Q.
We prove this estimate by using the coarea formula.‘®'® Using the Holder
and isoperimetric inequalities, one obtains the estimate for f:

B<8/a (16)

where « = 5*/S,, S, is the area of the support of P(Y) in £, and
5*={ POW(x)) dx/Ppss
2

We include the situation when P is not continuous. In this case the
meaning of the equation — Ay = P'(1f) is not clear. We shall give a meaning
for discontinuous P and prove (1.6) for such a P. In Section 2 we prove
(1.5) and extend it for discontinuous P. In Section 3 we briefly review the
plasma equilibrium equations (1.1)-(1.3). Together with a mathematical
formulation of the equations for discontinuous P, we derive a bound (1.6)

for p.
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Let us concisely survey related theories. For a given profile of P(y/),
the equilibrium equations (1.1)}-(1.3) are regarded as a nonlinear eigen-
value problem. A simple example is to take P'(y)= Ay *, where 1R and
¥ (x)=max{y(x), 0}. Then the boundary of the support of Y+ is a free
boundary. Analytic aspects of such a free boundary problem were exten-
sively studied by many authors; see, e.g., refs. 1, 4, 11, 15, and 18-20 and
references therein. In ref. 3 a more general problem including the effect of
external control field is studied, while the relation of P and y is still given
by P'(Yy)=Ay ™. In ref. 2 an inverse problem determining P’ of (1.1) is
studied by measuring dy/0n on 6Q. Our a priori estimate (1.6) for f§ as well
as the interpolation inequality (1.5) seem to be new even for a smooth P.

In the physics literature, however, there have been many discussions
on the limitation of . A mostly simple configuration is a circular-cross-
section z-pinch equilibrium (plasma column with only poloidal field; see
Section 3.1), which was studied by Bennett to show =1 for any (smooth)
profile of P(i); see Chapter5 of ref. 9 and Remark 3.5. Studies on a
toroidal equilibrium such as a tokamak (e.g., refs. 9 and 21) are of
principal importance. The high-poloidal-beta regime of tokamak equilibria
is attracting much interest because of many beneficial reasons for optimiz-
ing the fusion plasma confinement. A bound for the poloidal beta was
estimated by using approximate equilibrium solutions®%*>? and numeri-
cal calculations”’; however, there is no rigorous conclusion. To study a
toroidal plasma equilibrium, one should use a generalized toroidal version
of the Grad-Shafranov equation"®'”) instead of the simplified one (1.1), in
order to include the toroidal curvature effect as well as the theta-pinch
effect in addition to the z-pinch effect described by (1.1). Our assertion in
Section 3.2 is restricted to straight z-pinches; however, the method of
Section 2 may be useful for the analysis of the tokamak problem.

2. AN INTERPOLATION INEQUALITY

Our goal in this section is to estimate the total variation of V(P(y))
(as a vector-valued measure), where P is monotone and — Ay = 0. We first
derive the estimate for smooth .

Theorem 2.1. Let @ be a bounded domain in R” (n>1) and ¢ be
a constant. Suppose that Pe C'(R) with P’>0 and P(c)=0, and that
e C(2)n C%Q) with
— Ay =0 in Q,

2.1
y=c on 0Q D
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where m =2 and m 2 n. Let P, denote
Pax = sup P(Y(x)) (2.2)
xeQ

Then

1/2

[ Ve a2 (Pu | (canas) ([ Pona) @)

Proof. If —AYy =0, then Y =c on Q, so (2.3) holds with zero for
both sides. If P'()=0 on Q or P, =0, then either  =c or P=0. Again
(2.3) holds in this case, so we may assume that both integrals in the right-
hand side of (2.3) are nonzero. We may also assume that the L' norm of
— Ay is finite.

For K> 0 denote the set of x e Q for which |Vy(x)| >K by D. Let E
denote the complement of D in Q. From the definition it follows that

| VPWG)I dx= | PW)IVYldx

<Kj P'(w)dngf P'(Y) dx (2.4)

since P’ = 0.

By applying the maximum principle to (2.1), we observe that iy > ¢ on
2, 50 0=P(c) < P() < P, On Q. Applying the coarea formula (see, e.g.,
refs. 8, 13) yields

jD IVPY)| dx:fjw #7-1(S,) P'(1) dz:jw'"“ HUS) P dt (2.5)

with

S;=DnL, L={xeQy(x)=1},  Ymx=sup¥(x)

xef
where #7~! denotes the (n—1)-dimensional Hausdorff measure. Since
IViy| > K on D, it follows that
A S) = [ IVl VYT T <K (Vg d !
S L

Since ¥ € C*(R2), Sard’s theorem!?) implies that L, is a C" submanifold in
Q for almost every ¢ (a.e. ¢). Note that y >cin Q and Yy =cin Q and Yy =c¢
on 0Q. Thus for U,={xeQ;y¥(x)>1t} we observe U, Q for t>c¢. For
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ae t>¢, L, is a C" boundary of U,. Since L, is a t-level set of y,
n=Vy/| V| is a unit normal vector field. Applying Green’s formula yields

j VY| d%”*‘=f w-nd,yf"—l:j (—Ap)dx, t>c
L, L, Uy
From —4Yy =0 it now follows that
[ ivyranm <] (—ap)ax
L Q
Wrapping up these two estimates, we obtain
HUS)KK | (—ay) dx
Q
Applying this estimate to (2.5) yields
[ 1VPO) dx <K P | (— ) dx (2:6)
D Q
where P, is defined in (2.2). Summing (2.4) and (2.6), we obtain
[ IVPW ax<K | P dx+ K Pos | (—ap)ax  (27)
Q Q Q

for arbitrary K> 0. Taking
1/2
K| P [ (~vras| | Py as |
Q Q

in (2.7) yields (2.3). |

If y is not C?, one should interpret — Ay > 0 in the distribution sense.
As is well known,"® a nonnegative distribution is a nonnegative Radon
measure. Let y be a finite Radon measure on a bounded domain 2 in R”.
The unique solvability of the Dirichlet problem

—AYy=p in Q, (2.8a)
Yy=c on JQ (¢ constant) (2.8b)
is now well known for a smooth boundary 0€2. We solve this problem by

using a result of Simader’® when the boundary is C'. Let W9(Q) denote
the L7 Sobolev space of order one (1 <g<o0). Let W59(Q) be the sub-
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space {ue W"Q); u=0 on dQ2}. We denote by W~ "49(Q) the dual space
of Wi (Q) where 1/g=1-1/q.

Lemma 2.2 (Theorem 4.6 of Simader"*). Let 2 be a bounded
domain with C' boundary in R". Assume that 1<g<oo. For each
fe W 9Q) there is a unique solution ® e Wy4(2) for —A®=fin Q.
Moreover, the mapping from f to @ is bounded linear from W~'9(Q2) to
WiiQ), ie.,

1P, <ClflZ1q (2.9)

with a constant C= C(£2, g, n).

Corollary 2.3. Let Q be a bounded domain with C! boundary in
R”. For a finite Radon measure y on £ there is a unique solution Y of
(2.8a), (2.8b) such that y € Wh"(Q) for 1 <r<n/(n—1).

Proof. Observe that r' >n implies W§"(2)<= C(Q) by the Sobolev
inequality. This yields 4 € W~ "(Q) by a duality, where 1/r = 1 — 1/r".
Applying Lemma 2.2 with / = p obtains a unique solutiony byy =& +c. |

Theorem 2.4. Let Q be a bounded domain with C! boundary in
R". Let ¢ be a constant. Suppose that Pe C*(R) with P’ >0 and P(c)=0.
Suppose that € W' () for some r such that 1 <r<n/(n—1), and that
Y satisfies

—AY =0 in Q (in the distribution sense)

Yy=c on 0Q

Let ..« be the essential supremum of ¥ over £2. Assume that P and P’ are
bounded on [c¢, ¥ ,..).- Then

1/2
J| 1Y) die < 2P| = 401" ( J, P dx) (2.10)

where P, =sup{P(c);c< o< Ymax ) and -], denotes the total variation
of a measure on Q.

Proof. We may assume that  and P are nonconstants and that
— Ay = p is a nonnegative finite Radon measure on Q. Modifying P(c) for
0> Yomay, We may assume P=sup{P(d);0>=c} is very close to P say
PP +e >0.

We extend p outside Q2 by zero and define u,=pu=* p,, where p,
is Friedrichs’ mollifier such that p, tends to the delta function as /— oo.

max?
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Let y,e W"9(£2) be the solution of (2.8a), (2.8b) with p=y,. Since y, is
bounded, Lemma 2.2 implies that ,—ce Wy(Q) for all g>1. By the
Sobolev inequality we see that ¥, C(Q). Since u, is smooth, the interior
regularity of the Poisson equation implies that yr,e C*(£2). Theorem 2.1
yields

1/2

jg IVP(J))| dx <2 (F jg (— ) dx)l/z (L P'(y) dx) @2.11)

Since ue W17(Q) is expressed as

"0
n=2 a-fite

j=1 J

with some f,, geL’(2), we have p,—pu strongly in W~""(Q). The
inequality (2.9) thus implies that ,— in W'"(Q). We may assume
Y, (x) > ¥(x) and Vi, (x) - Vi(x) for ae. x by taking a subsequence if
necessary. Applying the Lebesgue dominated convergence theorem yields

I 1VPW dx | 1VPW)]dx

jg P/(Y) dx — fg P'(§) dx

since P is bounded on [c, + o). Clearly,
J (mauydx o[ (— ) de=| -4y,
Letting / — oo in (2.11) yields
[ VR as <2l -y ([ Pt )

Since P<P,.,,+¢ and ¢>0 can be chosen arbitrary, this leads to
(2.10). 1

We next extend the inequality (2.10) when a nondecreasing function P
is not necessarily continuous. Let us give an interpretation of each integral
appearing in (2.10). Instead of the integral [, P'(y) dx, we consider

[P(¥)]=inf lim | Pj(¥)dx

[— o0

822/72/5-6-34
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Here the infimum is taken over all sequences P,e C*(R) with P; >0 such
that P,(yy)— P(y) in L°(Q) for some !<s<oo as /—ooc and that
(P))max = €88 sSupg P(Y). We say {P,} is an admissible approximation of P
if these properties hold. If P is itself C' and satisfies the assumptions in
Theorem 2.4, P itself is an admissible approximation, so for such a P we
have

[PI<| P)ax
o
Since [, [VP(y)| dx is the total variation of VP(y) on £, ie.,

IVEWI = | 1VPW(x))] d

= sup {fﬂ PU() V- 0(x) dxi 0 € CY(@), [0(x)] <L on 2]
it is easy to see that

IVP@)I, < lim | |VP,()] dx

I Q2
for any admissible approximation {P,} of P since sup lim< lim sup. We

have thus proved the following assertion.

Theorem 2.5. Assume the hypotheses of Theorem 2.4 concerning
¢, Q, and . Let P be a nondecreasing function on R with P(c)=0. Then

VP S 2(Prax| =AY 1) LR ()] (2.12)

provided that P_,, =ess sup, P(y) is finite.

Remark. 1If P(s)=o0, the inequality (2.10) is an interpolation
inequality

IV < 2P| — A1) V21212

where || denotes the Lebesgue measure of Q2.

3. APPLICATION TO PLASMA PHYSICS:
ESTIMATE OF THE BETA RATIO

3.1. Background of the Problem

In this section, we describe an application of the interpolation
inequality derived in Section 2. We study the upper bound of the plasma
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pressure integral for a given magnitude of plasma current. We consider a
plasma equilibrium where the pressure force Vp is balanced by the
magnetic force jx B=(VxB)x B/u,. Let us briefly review the physical
formulation of the plasma equilibrium equations (1.1}-(1.3).

When a plasma equilibrium has an ignorable coordinate, the
equilibrium equation

(VxB)xB/u,=Vp (3.1)

reduces to a simple nonlinear equation, which is called the Grad-
Shafranov equation.”’®!'”) In this paper, we assume an infinitely long
plasma column with 8/0z = 0 in the Cartesian coordinates {x,, x,, z).
Moreover, we consider a simple z-pinch configuration, where the current
density vector j has only the longitudinal z component j, and B has only
the transverse x and y components (poloidal field). Since V- B =0, we may
write

B=Vy xV:z (3.2)
where ¥ = y(x,, x,) is the flux function. We obtain
VxB=(—AYy)Vz=yp,j.Vz (3.3)

Substituting (3.2) and (3.3) into (3.1), we observe that Vi parallels Vp, so
p is constant on each level set of Y, ie., p = p(¥) formally. The equilibrium
equation (3.1) now leads to a (nonlinear) elliptic partial differential
equation for y,

My =P) nQ (3.4)

where P=p,p and VP=P'() V. We note that the pressure in an
equilibrium state should satisfy the relation

P(xy, X5) = P(Y(x,, x,3))/ 1o (3.5)

Here, P(¥) (>0) is an arbitrary function that satisfies the following
conditions. First, we assume that P(y) is a nondecreasing function, so that

P'(Y(xy,x,))=0 in 2 {3.6)

The support 2, of P(y(x,, x,)) is the plasma region, which must be
contained in Q. Therefore, we assume

P=0 ondQ (3.7)
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The boundary of €, is the plasma free boundary. The boundary condition
on Y is that the normal component of B vanishes on the boundary 0%,
which reads, by (3.2),

¥ = ¢(=const) on 082 (3.8)

We restrict the total current / (a positive constant); by (3.3) the current
through the cross section 2 is given by

J Jedx=p3t [ (—ap)dx=1 (39)

Our goal in this paper is to construct an a priori estimate with respect
to the beta ratio for the solution to (3.4), (3.8), (3.9). For a current-
carrying plasma column, the (poloidal) beta ratio is defined by (1.4). Using
the relations (3.5), (3.6), and (3.9), we obtain

B=8rl| P/l —4yI7 (3.10)

3.2. Mathematical Formulation and Estimate of the Beta Ratio

We shall give a meaning to —Ay =P'(}y) when a nondecreasing
function P is not continuous and ¥ is not smooth.

Definition 3.1. Suppose that € W' () for some r, 1 <r< o,
and that P is nondecreasing. We say y and P satisfy

— Ay =P'(Y) in Q
if the following properties hold.

(i) —4Y¥ =0 on Q in the distribution sense.
(ii) There is an admissible approximation {P,} such that

lim [ [—dy—Pj()] ¢ dx=0

-

for all ¢ e C(Q2).

Theorem 3.2. Let Q be a bounded domain with C' boundary in
R”. Let ¢ be a constant. Assume that P is a nondecreasing function on R
and that P(c)=0. Assume that € W"(Q) for some r, 1 <r<n/(n—1),
and that y satisfies

— Ay =P'(Y) in 2 (in the sense of Definition 3.1)
y=c on 0Q

(3.11)
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Then
VP <2PY2 ol (3.12)

a.

where

I=t | (=) dx= g | = A0

Proof. We may assume P
observe that

< 00. By Definition 3.1(ii) with ¢ =1 we

max

[P lim | Py)de=] (—dy)dx=|—ayl,
since — Ay = 0. The inequality (2.12) yields (3.12). |

Example 3.3. Let Q be a unit disk in the plane, i.e.,
Q={xeR? x| <1}
For m>0 and 0 < R< 1 we consider
Y(x)=min{m, —alog |x|}, xef

Here a= — m/log R, so that ¥ is continuous across the circle |x| =R. If P
is a step function such that

P(c)=(a/R)* for o>=m

=0 for o<m

then ¥ and P satisfy — Ay = P'(y) in  in the sense of Definition 3.1.
Indeed it is easy to see that e W'"(Q) for some r, 1 <r < oo, and
that

— Ay =(a/R)d, in Q
where J is the Dirac measure of the circle |x| =R, i.e.,
J <p5R=J pds for @eCy(R?)
Q x| =R

We then seek an admissible approximation P, of P such that Defini-
tion 3.1(ii) holds. Let f€ C(R) be

fle)=1 for 020

=0 for o< —1
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such that f'>0. If P, is given by
P(o)=bf((c—m)l) with b= (a/R)*

then P, is an admissible approximation satisfying (ii). To see this, we
proceed with

| Pithedx=b] if((—aloglxl-m)gdx, geCF@)

R<|x|<1
(3.13)
We observe that
1 R [0 R
j lf’((—alogr——m)l)dr=—f () di== (3.14)
R ad_ a

by the change of variabies
t=(—alogr—m)l

Since . [f'20 and the support of the integrand in (3.13) is an annulus
shrinking to the circle |x| = R as / — oo, applying (3.14) to (3.13) yields

R
fp;(tp)godx—»b—f ods as I— o
(o] a

[x| =R

Since b= (a/R)?, P, () satisfies (ii).
For this choice of P and v,
IVP)Il, = (a/R)* 27R
Pmaxz(a/R)z’ ||—Alﬁ|[1=(a/R) 2nR

so evidently (3.12) holds. There is a possibility that the constant 2 in (3.12)
can be replaced by a smaller number. But, as this example shows, the
constant should be greater than or equal to one.

As an application of Theorem 3.2, we compute the beta ratio f§ in
(3.10) when Q is a two-dimensional bounded domain. We introduce several
quantities:

S, = area of the support of P(is) in Q

S*: ”P(l/I)”l/Pmax
a=8*S, (<1)
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Theorem 3.4. Assume the same hypotheses as Theorem 3.2 con-
cerning £2, ¢, P, and i with n=2. Let § be the beta ratio concerning P and
W satisfying (3.11). Then

B < 8m(2C,) /o =8/ (3.15)

with Cy=1/27'2, provided that I is finite.

Proof. We may assume «>0. By the Holder inequality and the
isoperimetric inequality (see, e.g., refs. 8 and 13) we obtain

P < (So) 21 PW)ILE < (S0)'? Gl VP
Theorem 3.2 now yields
1P < (So)' 2 Co2P iz, ol
< (SofS*) 2 2Co I PO Y2 po !

so that

PO < (2CopoT) o
From this follows the desired estimate for . |§

Remark. Concerning the z-pinch equilibrium discussed in this
section, one has Bennett’s pinch relation (see, e.g, ref 9), ie, f=1 for
every P(y) as far as y =y(r), where r=|x| is the radial coordinate. This
relation is easily derived by integration by parts. We denote by a the radius
of the circular plasma cross section, i.., the radius of the support of
P@(r)). Since P(y(a))=0, integrating by parts yields

[P 2 i, (3.16)
0 r
On the other hand, by dP(Y/(r))/dr = P' dyi/dr, we have

*dPy(r)) , dlﬁ 24

J0 dr J P

— F(a) (a % (a)> - jo Fir) (% (r gd; lp)) dr (3.17)

F(r)= jor P(y(r)) r dr

where we define
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Using (1.1), we see that the integrand of the second term on the right-hand
side of (3.17) is equal to dF(r)?/2 dr. By (1.3), we obtain

2n f: —r7! c—j—; (l’%lﬁ) rdr=2n f: P(Y(r)) rdr=uel

which shows that

o el
Fa)=a"% (@) =52

Comparing (3.16) and (3.17), we obtain

1P = (o])*/8m

which implies f=1.

In this situation, our estimate (3.15) does not yield the best result,
since o can be small for a peaked profile of P(y/(r)). This is because we had
to use the Holder inequality to derive (3.15). Our estimate, however, is use-
ful when we consider a more general configuration.
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