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An interpolation inequality for the total variation of the gradient of a composite 
function is derived by applying the coarea formula. A bound for the pressure 
integral is studied by establishing an a priori estimate for a solution of the 
Grad-Shafranov equation of plasma equilibrium. A weak formulation of the 
Grad-Shafranov equation is given to include singular current profiles. 
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1. I N T R O D U C T I O N  

A simple but essential question in the fusion ptasma research is how large 
a plasma energy can be confined by a given magnitude of plasma 
current./9,21 23) In a magnetohydrodynamic equilibrium of a plasma, the 
thermal pressure force Vp is balanced by the magnetic stress j x B, where B 
is the magnetic flux density, j = V x B/tto is the current density in the 
plasma, and #o = 4z • 10 - 7  is the vacuum permeability. The plasma equi- 
librium equation Vp = j  • B thus relates the pressure and the current. We 
want to estimate the maximum of the total pressure with respect to a fixed 
total current. Mathematically this problem reduces to an a priori  estimate 
for the pressure integral with respect to a solution of the equilibrium 
equation with a given magnitude of current. 

Here we assume a simple two-dimensional plasma equilibrium. Let 
f2 = R  2 be a bounded domain. We consider an infinitely long plasma 
column; t2 corresponds to the cross section of a column containing the 
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plasma. If there is no longitudinal magnetic field, the equilibrium equations 
are 

- A  ~u= P'(~O) inf2, (1.1) 

= c on 80 (1.2) 

I (-~)ax=~,0I, (1.3) 

where ~ is the flux function, P= #oP, P(t) is a nonnegative function from 
R to R, P'  = dP(t)/dt, I is a given positive constant, and c is an unknown 
constant; see Section 3.1 for the derivation, and also see refs. 9, 10, 17, and 
21. We assume P'~>0. Since --AO/l~ o parallels the current density, I 
represents the total plasma current. The total pressure in a unit length of 
the plasma column is given by integrating p over ~. In this paper we study 
a bound for the (poloidal) beta ratio, ~ which is defined by 

fl=fapdx/(I2kto/S~)=Sn ; P(O)dx/(;a (-Atp)dx) 2 (1.4) 

A crucial step is to establish an interpolation inequality to estimate the 
total variation of the gradient of P(O) in f2. Our estimate reads 

f~ IVp(I]I(x))I dx~2(Vmaxf~2-zl~ldx)U2(fQP'(~l(x))dx) 1/2 (1.5, 

provided that - A ~ , > 0  in ~2 and 0 = c  on 8~2, and that P'>~O with 
P(c) -- 0, where c is a constant and Pm~x is the maximum of P(~)  over O. 
We prove this estimate by using the coarea formula. (s'13) Using the H61der 
and isoperimetrie inequalities, one obtains the estimate for fl: 

fl ~< 8/~ (1.6) 

where ~ = S*/So, So is the area of the support of P(~0) in ~2, and 

S* =fn P(~t(x)) dx/Pma x 

We include the situation when P is not continuous. In this case the 
meaning of the equation -A~b = P'(O) is not clear. We shall give a meaning 
for discontinuous P and prove (1.6) for such a P. In Section 2 we prove 
(1.5) and extend it for discontinuous P. In Section 3 we briefly review the 
plasma equilibrium equations (1.1)-(1.3). Together with a mathematical 
formulation of the equations for discontinuous P, we derive a bound (1.6) 
for ft. 



Bound for Pressure Integral in Plasma Equilibrium 1377 

Let us concisely survey related theories. For a given profile of P(O), 
the equilibrium equations (1.1)-(1.3) are regarded as a nonlinear eigen- 
value problem. A simple example is to take P ' ( ~ ) = ) ~ + ,  where 2 ~ R and 
0+(x)=max{O(x) ,  0}. Then the boundary of the support of 0 + is a free 
boundary. Analytic aspects of such a free boundary problem were exten- 
sively studied by many authors; see, e.g., refs. 1, 4, 11, 15, and 18-20 and 
references therein. In ref. 3 a more general problem including the effect of 
external control field is studied, while the relation of P and ~ is still given 
by P'(O)=2~b +. In ref. 2 an inverse problem determining P' of (1.1) is 
studied by measuring O~/On on 012. Our a priori estimate (1.6) fo r / / a s  well 
as the interpolation inequality (1.5) seem to be new even for a smooth P. 

In the physics literature, however, there have been many discussions 
on the limitation of ft. A mostly simple configuration is a circular-cross- 
section z-pinch equilibrium (plasma column with only poloidal field; see 
Section 3.1), which was studied by Bennett to show fl = 1 for any (smooth) 
profile of P(O); see Chapter 5 of ref. 9 and Remark 3.5. Studies on a 
toroidal equilibrium such as a tokamak (e.g., refs. 9 and 21) are of 
principal importance. The high-poloidal-beta regime of tokamak equilibria 
is attracting much interest because of many beneficial reasons for optimiz- 
ing the fusion plasma confinement. A bound for the potoidal beta was 
estimated by using approximate equilibrium solutions (5'6'22'23~ and numeri- 
cal catculations~ however, there is no rigorous conclusion. To study a 
toroidal plasma equilibrium, one should use a generalized toroidal version 
of the Grad-Shafranov equation (1~ 17) instead of the simplified one (1.1), in 
order to include the toroidal curvature effect as well as the theta-pinch 
effect in addition to the z-pinch effect described by (1.1). Our assertion in 
Section 3.2 is restricted to straight z-pinches; however, the method of 
Section 2 may be useful for the analysis of the tokamak problem. 

2. AN INTERPOLATION INEQUALITY  

Our goal in this section is to estima,te the total variation of V(P(~p)) 
(as a vector-valued measure), where P is monotone and - A  0 ~> 0. We first 
derive the estimate for smooth 0. 

Theorem 2.1. Let12 be a bounded domain in R n ( n ~ > l ) a n d c b e  
a constant. Suppose that p E C I ( R )  with P'~>O and P(c)=O, and that 
0 ~ cm(12) C~ C~ with 

-A~J>O i n ~ ,  
(2.1) 

= c on ~12 
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where m ~> 2 and m ~> n. Let Pmax denote 

Pmax----- sup P(~(x)) (2.2) 
x~2 

Then 

f~ [VP(~I(X))] dx~2  (PmaxfF2 (--A~l)dx)l/2(ft2Pt(~l(X))dX)l/2 (2.3) 

Proof. If - A ~ = 0 ,  then ~ = c  on g2, so (2.3) holds with zero for 
both  sides. If  P ' ( ~ )  - 0 o n / 2  or Pmax = 0, then either ~ -= c or  P = 0. Again 
(2.3) holds in this case, so we m a y  assume that  bo th  integrals in the right- 
hand  side of  (2.3) are nonzero.  We may  also assume that  the L 1 no rm of 
- - A ~  is finite. 

F o r  K > 0  denote  the set of  xEt-2 for which [Vr > K  by D. Let E 
denote  the complemen t  of  D in /2 .  F r o m  the definition it follows that  

fE IvP(0(x))l dx = fE P'(0)lV~,l dx 

(2.4) 

since P ' / >  0. 
By applying the m a x i m u m  principle to (2.1), we observe that  ~ ~> c on 

/2, so 0 = P(c)<~ P(O)<~ Pm,x on /2 .  Applying the coarea  formula  (see, e.g., 
refs. 8, 13) yields 

fD ]VP(0)I  dx = f +ooC~ ~L r l (S t )  Pt(t) at = fc omax o3~ n -  l (St )  Pt(t) dt (2.5) 

with 

S,=Dc~L,, L,={x612;~(x)=t}, I//max = sup I//(X) 
x E ff2 

where ovf~ i denotes the ( n -  1)-dimensional  Hausdor f f  measure.  Since 
]V~9] > K on D, it follows that  

~n-l (S ' )=fs  ] V ~ ] ' ] g ~ 9 ] - l d f f t ~  ' r e  J g ~ [ d f f f " - ~  
t t 

Since ~ ~ C"(s Sard 's  theorem (12) implies that  L, is a C" submanifo ld  in 
/2 for a lmost  every t (a.e. t). No te  that  ~0 > e in E2 and ~ = c in Q and ~9 = c 
on as Thus  for U t =  {xeg2;~(x)>t} we observe U t c ( 2  for t>c. For  
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a.e. t > c ,  L, is a C n boundary of U~. Since L t iS a t-level set of ~, 
n = V~/I V~] is a unit normal vector field. Applying Green's formula yields 

f ]V$ldoVfn l=f V t g . n d ~ , , - l = f  (-A$)dx, t>c 
Lt Lt Ut 

From - A S  ~> 0 it now follows that 

fL [V~'l d ~ n  l~f(-At~)dx 

Wrapping up these two estimates, we obtain 

Jt~n-x(st)<~K-X fo(-A@)dx 

Applying this estimate to (2.5) yields 

]VP(0)[ dx~<K 1pmaxjt2 (--Ai//)dx (2.6) 

where Pmax is defined in (2.2). Summing (2.4) and (2.6), we obtain 

fotVP(~l)[dx~gfoP'(O)dx+K IPmaxf (-A~t)dx (2.7) 

for arbitrary K >  0. Taking 

g:[emax f s  2 ( -~ l )dx / fQPt (~ l )dx l  1/2 

in (2.7) yields (2.3). | 

If ~ is not C 2, one should interpret -A@ ~> 0 in the distribution sense. 
As is well known, (16) a nonnegative distribution is a nonnegative Radon 
measure. Let # be a finite Radon measure on a bounded domain 12 in R n. 
The unique solvability of the Dirichlet problem 

- A f t  = #  in 12, (2.8a) 

0 = c on 012 (c constant) (2.8b) 

is now well known for a smooth boundary 8I-2. We solve this problem by 
using a result of Simader (14) when the boundary is C ~. Let W1'q(12) denote 
the L q Sobolev space of order one (1 < q <  oo). Let w~'q(12) be the sub- 
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space {ue  w~'q(Q); u = 0  on C(2}. We denote by m-l'q((2) the dual space 
of w~'q'((2) where 1/q = 1 - 1/q'. 

L e m m a  2 . 2  (Theorem 4.6 of Simader~ Let (2 be a bounded 
domain with C ~ boundary in R ". Assume that 1 < q <  oe. For  each 
f ~  W-I'q((2) there is a unique solution qs~ W~,q((2) for - A c b = f  in (2. 
Moreover, the mapping from f to ~b is bounded linear from W-I 'q (~)  to 
w~'q((2), i.e., 

II~ll 1,q < c Ilftl-x,q (2.9) 

with a constant C = C((2, q, n). 

C o r o l l a r y  2.3. Let (2 be a bounded domain with C 1 boundary in 
R". For  a finite Radon measure p on (2 there is a unique solution ~ of 
(2.8a), (2.8b) such that 0 ~  Wl'r((2) for 1 < r < n / ( n -  1). 

Proof. Observe that r' > n  implies Wl ' r ' ( (2)c  C(f2) by the Sobolev 
inequality. This yields # ~ W-1'~((2) by a duality, where 1/r = 1 - 1/r'. 
Applying Lemma 2.2 w i t h f  = # obtains a unique solution ~ by ~, = q~ + c. | 

T h e o r e m  2.4. Let (2 be a bounded domain with C 1 boundary in 
R n. Let c be a constant. Suppose that P c  CI(R) with P'>~ 0 and P(c)= O. 
Suppose that Oe Wl'r((2) for some r such that 1 < r < n / ( n - 1 ) ,  and that 
~p satisfies 

- A~p I> 0 in (2 (in the distribution sense) 

= c on c~Q 

Let I//ma x be the essential supremum of ~p over (2. Assume that P and P' are 
bounded on [c, ~kmax). Then 

\ 1/2 
f~ [VP(~(x))[ dx~2(Pmax,[-A~][,)l /2(f~ P ' (~(x ) )dx)  (2.10) 

where Pmax = sup{P(cr); c ~< a ~< ~tmax} and PI" [11 denotes the total variation 
of a measure on (2. 

Proof. We may assume that ~ and P are nonconstants and that 
- -A0 = #  is a nonnegative finite Radon measure on (2. Modifying P(~r) for 
a > ~  . . . .  we may assume P=sup{P(cr ) ;  ~ > c }  is very close to P . . . .  say 
_P~< Pmax + e, e > 0 .  

We extend # outside (2 by zero and define p t = t t .  Pt, where Pl 
is Friedrichs' mollifier such that Pt tends to the delta function as l ~  ~ .  
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Let fft~ wI'q(o) be the solution of (2.8a), (2.8b) with #=#t .  Since /~t is 
bounded, Lemma 2.2 implies that q/z-ce wI'q(o) for all q>  1. By the 
Sobolev inequality we see that ~ e C(O). Since /~t is smooth, the interior 
regularity of the Poisson equation implies that Ore C~176 Theorem 2.1 
yields 

f lVP(~,)ldx<.2(Pf(-AO,)dx)l/2(fP'(~,,)dx)l/2 (2.11) 

Since tte W-1"(0) is expressed as 

# = i  ~3 
j= I ~jXj f j  + g 

with some f;, gELr(O), we have # z ~ #  strongly in W--~'r(O). The 
inequality (2.9) thus implies that O l ~  in Wl"(O). We may assume 
0t(x)--, 0(x) and V0l(x)~VO(x)  for a.e. x by taking a subsequence if 
necessary. Applying the Lebesgue dominated convergence theorem yields 

f IVP(~z)I dx~y~ FVP(~&)I dx 

I P'(O,)dx~f P'(O)dx 
since P' is bounded on [c, + oo). Clearly, 

f, (-,JO,) ,ix --, f,~ (-,~0) dx = I1-AOlll 

Letting l--, ~ in (2.11) yields 

fo ,VP(O(x))l dx<~2(Pl, A~l[11)l/2(f~2 

Since /5~<Pmax+g and e>O can be chosen 
(2.10). | 

P'(O(x)) dx) ~/2 

arbitrary, this leads to 

We next extend the inequality (2.10) when a nondecreasing function P 
is not necessarily continuous. Let us give an interpretation of each integral 
appearing in (2.10). Instead of the integral ~ P'(~b)dx, we consider 

[P'(~h)] = inf li_m_ f~ P'~(O) dx 
[---~ oO 

822/72 /5-6-34  
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Here the infimum is taken over all sequences Pz~ C~(R) with P~ >~0 such 
that Pl(~b)~P(O) in LS(O) for some l<~s<oo  as l--->~ and that 
(Pl)max --~ ess supo e(~/).  We say {Pt} is an admissible approximation of P 
if these properties hold. If P is itself C 1 and satisfies the assumptions in 
Theorem 2.4, P itself is an admissible approximation, so for such a P we 
have 

[P'(~k)] ~< ja  P'(ff) dx 

Since S~2 IVP($)] dx is the total variation of VP($)  on I2, i.e., 

IIVP($')II1 = fo I VP(O'(x))l dx 

:=sup  {;xaPOp(x))V. qffx)dx; qg~C~(f2), I~0(x)l < 1 on#2} 

it is easy to see that 

IIVP(~,)IJ~ ~< lim [ [VPt(~b)[ dx 
~t2 

for any admissible approximation {P~} of P since sup lim~< lim sup. We 
have thus proved the following assertion. 

T h e o r e m  2.5. Assume the hypotheses of Theorem 2.4 concerning 
c, O, and 0. Let P be a nondecreasing function on R with P(c) = 0. Then 

II VP(~,)II ~ ~< 2(Pmax [I-  A~'II l)l/2[P'(~t)] U2 (2.12) 

provided that Pmax = ess s u p t  ~ e ( ~ )  is f inite.  

Remark. If P(a)=a, the inequality (2.10) is an interpolation 
inequality 

II V~ II x ~ 2(Pmax II-A~II x) a/2 It~l 1/2 

where [#21 denotes the Lebesgue measure of O. 

3. A P P L I C A T I O N  TO P L A S M A  PHYSICS;  
E S T I M A T E  OF THE BETA RATIO 

3.1. Background of  the Problem 

In this section, we describe an application of the interpolation 
inequality derived in Section 2. We study the upper bound of the plasma 
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pressure integral for a given magnitude of plasma current. We consider a 
plasma equilibrium where the pressure force Vp is balanced by the 
magnetic force j x B = (V x B) x B/#o. Let us briefly review the physical 
formulation of the plasma equilibrium equations (1.1)-(1.3). 

When a plasma equilibrium has an ignorable coordinate, the 
equilibrium equation 

(V x B) x B/# 0 = Vp (3.1) 

reduces to a simple nonlinear equation, which is called the Grad-  
Shafranov equation. (1~ In this paper, we assume an infinitely long 
plasma column with c?/& = 0 in the Cartesian coordinates (xl, x2, z). 
Moreover, we consider a simple z-pinch configuration, where the current 
density vector j has only the longitudinal z component Jz and B has only 
the transverse x and y components (poloidal field). Since V- B = 0, we may 
write 

B = V O  xVz (3.2) 

where Ip = ~/(Xl, x2) is the flux function. We obtain 

V• Vz=#ojzVz (3.3) 

Substituting (3.2) and (3.3) into (3.1), we observe that V~p parallels Vp, so 
p is constant on each level set of ~p, i.e., p = p(O) formally. The equilibrium 
equation (3.1) now leads to a (nonlinear) elliptic partial differential 
equation for 0, 

- A 0  = P '(0 ) in f2 (3.4) 

where P=#oP and VP=P ' ( f f )VO.  We note that the pressure in an 
equilibrium state should satisfy the relation 

p(xl, x2) = P(tP(xl, x2))/#o (3.5) 

Here, P(O) (>/0) is an arbitrary function that satisfies the following 
conditions. First, we assume that P(O) is a nondecreasing function, so that 

P'(Ip(x1, X2) )/> 0 in s (3.6) 

The support (2e of P(O(xl, x2)) is the plasma region, which must be 
contained in s Therefore, we assume 

P = O on c?~? (3.7) 
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The boundary of f2p is the plasma free boundary. The boundary condition 
on ~O is that the normal component of B vanishes on the boundary 8Q, 
which reads, by (3.2), 

= c(=const)  on 8f2 (3.8) 

We restrict the total current I (a positive constant); by (3.3) the current 
through the cross section f2 is given by 

Iaj~dx=l~ol fa (-AO)dx=I (3.9) 

Our goal in this paper is to construct an a priori estimate with respect 
to the beta ratio for the solution to (3.4), (3.8), (3.9). For a current- 
carrying plasma column, the (poloidal) beta ratio is defined by (1.4). Using 
the relations (3.5), (3.6), and (3.9), we obtain 

/~ = 8<lP(r 1/11 - A ~ , I [  12 (3.10) 

3.2. M a t h e m a t i c a l  Formula t ion  and Est imate  of  the  Beta Rat io 

We shall give a meaning to - A ~ h = P ' ( ~ )  when a nondecreasing 
function P is not continuous and ~ is not smooth. 

Def in i t i on  3.1. Suppose that ~ wl'r(s for some r, 1 < r <  o% 
and that P is nondecreasing. We say ~ and P satisfy 

- A 0  = P'(O) in s 

if the following properties hold. 

(i) -AO/>  0 on f2 in the distribution sense. 

(ii) There is an admissible approximation {Pl} such that 

,lim fa [-dO-P;(O)] ~odx:O 

for all ~p e C(~). 

T h e o r e m  3.2. Let ~2 be a bounded domain with C 1 boundary in 
R n. Let c be a constant. Assume that P is a nondecreasing function on R 
and that P (c )=0 .  Assume that ~ e  Wl'r(~2) for some r, 1 <r<n/(n-1), 
and that ~ satisfies 

-A~9 = P'(~) in f2 (in the sense of Definition 3.1 ) 
(3.11) 

O = c on c~g2 
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Then 

where 

Proof. 
observe that 

1/2 
IIVP(q,)ll ~ ~< 2rmax#O/ (3.12) 

I =  l~~ f~ ( -  AO ) d x =  #~ - AOll t 

We may a s s u m e  Pmax < o(3. By Definition 3.1(ii) with (p - 1 we 

since - A 0 > ~ 0 .  The inequality (2.12) yields (3.12). | 

E x a m p l e  3.3. Let 12 be a unit disk in the plane, i.e., 

12= { x e R 2 ;  Ix[ < 1} 

For  m > 0 and 0 < R < 1 we consider 

0 ( x )  = min{m,  - a  log Ix] }, x e 12 

Here a = - m / l o g  R, so that ~9 is continuous across the circle Ix[ = R. If P 
is a step function such that 

P(a)  = (a/R) 2 for o- >~ m 

= 0  for a < m  

then ~ and P satisfy - A 0  = P ' (~ )  in 12 in the sense of Definition 3.1. 
Indeed it is easy to see that 0 e wl'r(12) for some r, 1 < r < o% and 

that 

- A O  = (a/R)3R in 12 

where 3R is the Dirac measure of the circle Ix[ = R, i.e., 

fa ~ o R Jlxl = R ~O 5 ds for 

We then seek an admissible approximation 
tion 3.1(ii) holds. Let f 6  C~(R) be 

f ( a ) = l  for o-~>0 

= 0  for cry< - 1  

~p e C ~ ( R : )  

P~ of P such that Defini- 
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such that f ' / >  0. If PI is given by 

Pt(a)=bf((~r-m)l)  with b=(a/R) 2 

then Pz is an admissible approximation satisfying (ii). To see this, we 
proceed with 

f P;(~k)~pdx=bfR l f ' ( ( -a log lx l -m) l )qgdx ,  (o~C~(Q) 
< l x l < l  

We observe that 

(3.13) 

fRlf ' ((--alogr m)l)dr R f  ~ R - = - -  f ' ( r )  d r  = -  
a ~ a 

by the change of variables 

~= ( - a l o g r - m ) l  

(3.14) 

Since /f'>_-0 and the support of the integrand in (3.13) is an annulus 
shrinking to the circle Ix[ = R as l ~  0% applying (3.14) to (3.13) yields 

fa P;(~)~pdx~b R f -- q~ ds as l -~oe  
a Ixl = R  

Since b =  (a/R) 2, P}(O) satisfies (ii). 
For  this choice of P and ~, 

IIVP(~)[[ 1 = (a/R) 2 2rcR 

Pmax=(a/R) 2, II--A~,I[I=(a/R) 2~R 

so evidently (3.12) holds. There is a possibility that the constant 2 in (3.12) 
can be replaced by a smaller number. But, as this example shows, the 
constant should be greater than or equal to one. 

As an application of Theorem 3.2, we compute the beta ratio /~ in 
(3.10) when s is a two-dimensional bounded domain. We introduce several 
quantities: 

So = area of the support of P(~)  in f2 

s*  = [Ie(~,)ll 1/emax 

= S*/So ( <~ 1 ) 
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T h e o r e m  3.4. Assume the same hypotheses as Theorem 3.2 con- 
cerning f2, c, P, and ~ with n = 2. Let/~ be the beta ratio concerning P and 

satisfying (3.11). Then 

fi ~< 8~(2Co)2/~ = 8/c~ (3.15) 

with Co = 1/2~ 1/2, provided that I is finite. 

Proof. We may assume e > 0 .  By the H61der inequality and the 
isoperimetric inequality (see, e.g., refs. 8 and 13) we obtain 

IIP(0)II 1 ~< (So)mllP(@)ll ~/2 ~< (So)1/2 Co]lVP(O)ll, 

Theorem 3.2 now yields 

IIP(@)II 1 ~< (So) 1/2 */2 Co2Pm~x12OI 

<~ (So~S*) 1/2 2CollP(~)ll I/2 120 1 

so that 

lIP(~)ll i ~ (2Co12oI)2/~ 

From this follows the desired estimate for ft. II 

Remark. Concerning the z-pinch equilibrium discussed in this 
section, one has Bennett's pinch relation (see, e.g., ref. 9), i.e., f l= 1 for 
every P(~0) as far as $ = ~k(r), where r = [xl is the radial coordinate. This 
relation is easily derived by integration by parts. We denote by a the radius 
of the circular plasma cross section, i.e., the radius of the support of 
P(~k(r)). Since P($(a))= 0, integrating by parts yields 

fo dP(Lb(r)) = - rc-lflP($)ll, (3.16) r 2 dr 
dr 

On the other hand, by dP(~O(r))/dr = P' d~b/dr, we have 

adp(O(r)) r2 d r = f f  p,(~b ) dOr2 dr 
dr -dr 

= F(a) (a dt~ (a))- f: F(r) (d (r d ~ r  d r O ) )  dr (3"17) 

where we define 

F(r) = P'(q;(r)) r dr 
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Using (1.1), we see that the integrand of the second term on the right-hand 
side of (3.17) is equal to dF(r)2/2 dr. By (1.3), we obtain 

;o (Jr) ;: 2re _ r 7 1  d -~r r ~k r dr = 2n P'(~O(r)) r dr = po I 

which shows that 

~ r  poI  
F ( a )  = a ( a )  = 2~  

Comparing (3.16) and (3.17), we obtain 

I Ie (~ ) l l  1 = ( ~ 0 1 ) 2 / 8 =  

which implies/~ = 1. 
In this situation, our estimate (3.15) does not yield the best result, 

since 7 can be small for a peaked profile of P(~(r)) .  This is because we had 
to use the HSlder inequality to derive (3.15). Our estimate, however, is use- 
ful when we consider a more general configuration. 
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